Supporting personalized treatment decisions in relapsing remitting multiple sclerosis (RRMS)

Braune S1, van Hövell P2, Grimm S2, Drewek A2, Stühler E2, Ziemssen T3, BergmannA1, NTD Study Group1

1 NeuroTransData Netzwerk, Neuburg an der Donau, 2 PricewaterhouseCoopers Digital Services, Zürich, 3 Center of Clinical Neuroscience, Carl Gustav Carus University Clinic Dresden, Germany

Background: Therapeutic decisions in RRMS have become a complex task as many disease modifying therapies (DMTs) with different benefit/risk ratios are available. Clinical study data do not match individual patient characteristics and can not cover all possible efficacy comparisons. Advanced statistical models were developed to utilize real-world evidence data for personalized prediction of treatment outcome in different DMTs for individual RRMS patients.

Aim: Development of a tool based on statistical models to support therapy decisions by providing individualized probabilities for freedom of relapse and freedom of 3-months-confirmed-EDSS-progression (3mCEP)*. These predictions are provided for each DMT based on individual clinical RRMS history and other characteristics of single RRMS patients.

PHREND® (Predictive Healthcare with Real-world-Evidence in Neurological Disorders) is based on: Methods: Data base: NeuroTransData MS registry from 2009 onwards, data extracted from overall 18947 adult RRMS patients with an initial EDSS < 6.5 and with therapies initiated later than 6 months after diagnosis of RRMS, identifying 2354 DMT therapy cycles. **Parameters** employed in the models: age, gender, duration of RRMS, previous therapy and its duration, indicator if one of the two previous therapies was second line, EDSS total score, number of relapses within last 12 months, time since last relapse. **Outcome parameters**: probability of freedom of relapse activity and of 3-month-confirmed-EDSS-progression (3mCEP)* **Predictive mathematical models** are based on the assumption, that EDSS progressions follow a binomial and the number of relapses a negative binominal distribution. Generalized linear models are employed for both efficacy responses using Bayesian inference, integrating cluster effects for the multiple doctor centers and variable duration of therapies in the database. Models were evaluated with 10-fold crossvalidation. 10% of available data were used only for data validation. Mean square error of the forecast (Brier score) and Harrell's concordance-index mark quality of prediction. Comparative prognostic models based on relapse rate and EDSS progression were implemented for benchmarking.

* Definition 3mCEP: lasting EDSS increase associated with a relapse. Confirmed progression is assumed if EDSS increase is reproduced at least 3 months later. EDSS increase is defined as at least 1 point if EDSS < 5.5, as at least 0.5 point if EDSS > 5.5

Validity of prediction

Calibration of prediction: (Brier score)

Calibration of the Relapse model

Observed and fitted values are smoothed using LOESS, with t-based confidence intervals

Harrell's concordance-index (C-Index) (0.0 = no discrimination, 1.0 = perfect discrimination) Brier Score (BS) (0.0 = perfect prediction, 1.0 = no prediction)

	Trainin	g set	Cross-Validation set		10% test data	
Prediction	C-Index	BS	C-Index	BS	C-Index	BS
relapse-free	0.67±0.00	0.18±0.01	0.61±0.04	0.19±0.01	0.61±0.04	0.19±0.02
3mCEP-free	0.73±0.01	0.04±0.01	0,56±0.11	0.04±0.01	0.41±0.11	0.04±0.01

..... by advanced statistical methods and machine learning

From qualified, living

..... to personalized optimal treatment efficacy

RWE-registry data

Results:

Based on individual patient history, PHREND® calculates a prediction for each available DMT regarding probability of freedom of relapse activity and of 3mCEP for selectable yearly periods between 2 and 4 years. Results are presented in a hierarchical manner.

Range of results is communicated by underlying bars indicating 95% credible intervals of each predictive calculation.

Graphical presentation supports the comparison of allable DNAT antione to avone ant the above of

PHREND

Patient Data

Gender	Femal
Date of birth	07.1993

Date of MS	08.2017
diagnosis Current therap	No disease- Y modifying
Duration of cur therapy	rent 5
Previous therap (optional)	DY IF-beta1
Current EDSS so	core 0
Time since last relapse Number of	More than 1 year
relapses in last months	12

				available Divit options to support the shared	IF-BETA1	58 / 100 P	90 / 100 P
Additional decision criteria			decision process between treating physician and				
Pregnancy	No preference	Risk profile	No preference	patient. The joint decision is selected and	GLATIRAMERACETAT	57 / 100 P	88 / 100 P
Application	No preference	Therapy choice	No preference	documented for electronic storage or printout			
Laboratory check frequency	No preference				TERIFLUNOMIDE	54 / 100 P	90 / 100 P

Summary: Qualified real-world-evidence data of the NTD MS registry and advanced statistical methods enable robust validated prediction of the probability of being relapse- or 3mCEP-free over a prospective period up to 4 years for available DMTs in RRMS based on patient's individual RRMS history. PHREND® (Predictive Healthcare with Real-world Evidence for Neurological Disorders) supports transparently the shared decision process between treating physician and patient to find the individually best-performing/most effective DMT to continue after failure of the current therapy. PHREND® shall improve control of disease activity, allocation of resources and cost efficacy of medical care. Additional studies are in progress that address further internal and external validation of these results.

<u>Financial disclosure</u>: This project was jointly funded by PwC and NTD.